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Abstract 

 The effects of thermal diffusion and radiation parameter on  three dimensional (3D) MHD 

free convective flow of a viscous incompressible fluid through a highly porous medium with 

periodic permeability in the presence of chemical reaction have been studied. Presence of 

periodic permeability contributed to three-dimensional flow. In view of the periodic permeability, 

the solutions of the coupled non-linear equations  of the  main flow are assumed as the 

superimposition  of a perturbed solutions with a small amplitude of variation on the two-

dimensional (2D) flow with a small amplitude of variation which is quite justified . The effects of 

the pertinent parameters are shown with the help of graphs and tables. Interesting and expected 

results include the significant contribution of buoyancy effect in enhancing the velocity field 

whereas  Lorentz force, endothermic  reaction, periodic permeability reduce it. Rate of mass 

transfer on the surface increases due to Soret number increases but reverse effect is observed in 

case of radiation parameter and chemical reaction. 
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Glossary 
B0 - Uniform magnetic field 
Cp - Specific heat at constant pressure 
C* - Concentration 
*
wC  - Concentration at plate 
*C∞  - Concentration of fluid far away from the plate 

T* - Temperature 
*
wT  - Temperature at plate 
*T∞  - Temperature of fluid far away from the plate 

D - Concentration diffusivity 
D1 - Coefficient of thermal diffusivity 
Gr - Grashoff number for heat transfer 
Gc - Grashoff number for mass transfer 
Nu - Nusselt number 
Pr  - Prandtl number 
Sc - Schmidt number 
S0 - Soret number 
Re - Reynolds number 
R - Radiation parameter 
Kp - Permeability parameter 
k - Thermal conductivity 
Sh - Sherwood number 
L - Wavelength of permeability distribution 
U - Free stream velocity 
*P∞  - Pressure in the free stream 

v* - Constant suction velocity 
S - Heat source 
Kc - Chemical reaction parameter  
qr - Radiative heat flux in the y-direction 
g - Acceleration due to gravity 
u*, v*, and w*  -  Components of velocity along x*, y* and z* direction respectively.  
Greek Symbols 
τ - Skin friction 
β - Volumetric coefficient of thermal expansion 
β*   - Volumetric coefficient of mass expansion 
ρ   - Density of the fluid 
σ   - Electrical conductivity of the fluid 
υ    - Kinematic viscosity 
µ     - Viscosity 
θ    - Dimensionless temperature 
φ    - Dimensionless concentration 
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1. Introduction 
 Study of heat and mass transfer play an important role in various industrial applications. 

More over, in  many transport  processes heat and mass transfer takes place simultaneously. As  a 

result of  which combined buoyancy effects i.e., thermal buoyancy and mass buoyancy affect the 

flow in the presence of thermal radiation. Hence, radiative heat and mass transfer play an 

important role in manufacturing industries for the design of fins, steel rolling, nuclear power 

plants, gas turbines and  various propulsion devices for aircraft, missile, satellites, combustion 

and furnace design, materials processing, energy utilization,  remote sensing for  astronomy and 

space exploration, food processing and cryogenic engineering, as well as numerous agricultural, 

health and military applications. If the  temperature of surrounding fluid is rather high, radiation 

effects play an important role and this situation does exist in space technology. In such cases, one 

has to take into account the combined effect of thermal radiation and mass diffusion. 

 The study of MHD flow with mass and heat transfer in the presence of radiation and 

diffusion has attracted the attention of a large number of scholars due to diverse applications. In 

astrophysics and geophysics, it is applied to study the stellar and solar  structures, radio 

propagation through the ionosphere, etc. In engineering we find its applications in MHD pumps, 

MHD bearings etc. The phenomenon of mass transfer is also very common in the theory of stellar 

structure and observable effects are defectable on the solar surface. In free convection flow the 

study of effects of magnetic field play a major rule in liquid metals, electrolytes and ionized 

gases. In power engineering, the thermal physics of hydromagnetic problems with mass transfer 

have enormous applications. Radiative flows are encountered in many industrial and 

environmental processes i.e., heating and cooling chambers, fossil fuel combustion energy 

processes, evaporation from large open water reservoirs, astrophysical flows, solar power 

technology and space  vehicle re-entry. On the other hand, hydromagnetic free convective flows 

with heat and mass transfer through porous medium have many important applications such as 

oil, gas production, geothermal energy, cereal grain storage, in chemical engineering for filtration 

and purification process, in agriculture engineering to study the underground water resource and 

porous insulation. In view of these applications, the unsteady magneto hydrodynamics 
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incompressible viscous flows past an infinite vertical plate through porous medium have received 

much attention. 

Free convective flow through a porous medium has attracted the  attention of several 

researchers because of its possible application to several geophysical applications.  Hossain and 

Mohammad (1988) studied the effect of Hall current on hydromagnetic free convection flow near 

an accelerated porous plate. The effects of magnetic field  and mass transfer on the free 

convective flow through a porous medium with constant suction and heat flux has been studied 

by Acharya et al. (2000).  Singh et al. (2001) have studied free convection in MHD flow of a 

rotating viscous liquid in porous medium past a vertical porous plate. Rath et al. (2001) have 

studied the flow and heat transfer of an electrically conducting visco-elastic fluid between two 

horizontal squeezing/stretching plates. Ece (2005) has  studied the free convection flow about a 

cone  under mixed thermal boundary conditions and a magnetic field. Dash et al. (2009) have 

studied the unsteady free convective  MHD flow through porous media in a rotating system with 

fluctuating temperature and concentration. As the importance of chemical reaction in the field of 

MHD came into society than many researchers started working in this field.  MHD flow through 

a porous medium past a stretched vertical permeable surface in the presence of heat source/sink 

and a chemical reaction has been studied by Dash et al. (2008). Free convection heat and mass 

transfer from a horizontal cylinder of elliptic cross section in micropolar fluids has been studied 

by Chang (2006).  Afify (2004) has studied the effect of a chemical reaction on the free 

convective flow and mass transfer of a viscous incompressible and electrically conducting fluid 

over a stretching surface. Kar et al. (2013) have studied the diffusion thermo effect on free 

convection and mass transfer MHD flow in a vertical channel in the presence of chemical 

reaction. 

Singh et al. (1995) have studied the effect of mass transfer on 3D unsteady forced and 

free convective flow passed an infinite vertical plate with periodic  suction. Three dimensional 

free convective flow and heat transfer through porous medium with periodic permeability has 

been studied by Singh and Sharma (2002). 

 Guria et al. (2009) have studied the three dimensional free convective flow in a vertical 

channel with a porous medium. Three dimensional free convective flow with heat and mass 

transfer through a porous medium with periodic permeability has been studied by Vershney and 

Singh (2005). The effects of thermal radiation and mass transfer on MHD flow past a vertical 

oscillating plate with variable temperature and variable mass diffusion have studied by Vijay 

Kumar and Varma (2011). Kesavaiah et al. (2013) have studied the effects of radiation and free 
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convection currents on unsteady couette flow between two vertical parallel plates with constant 

heat flux and heat source through porous medium. Three dimensional MHD  free convective  

flow with heat and mass transfer through a porous medium with periodic permeability and 

chemical  reaction have studied by Rath et al. (2013).  

 The main objective of the present  study is to analyse the effects of thermal diffusion and 

radiation on MHD free convective flow of viscous incompressible fluid through a  highly porous 

medium with periodic permeability giving  rise to a three-dimensional flow  in the presence of 

chemical reaction. 

2. Mathematical formulation of the problem 

 Considering the flow of a viscous fluid through a highly porous medium bounded 

by an infinite vertical porous plate with thermal diffusion and chemical reaction. The 

plate lying vertically on the x*-z* plane with x*-axis is taken along the plate in the vertical 

upward direction (Fig. 1). The y*-axis is taken normal  to the plate and directed into the 

fluid flowing laminarly with a uniform free stream velocity U. The permeability of the 

medium may not be uniform. Therefore, it is assumed to be periodic.   

 

Fig. 1 Schematic diagram of the flow 
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( )
*

* *
*

( )
1 cos /

pKK z
z Lπ

=
+∈

       (1) 

where *
pK is the mean  permeability of the medium. L is the wave length of permeability 

distribution and ∈(<<1) is the amplitude of the permeability variation. The problem becomes  

three-dimensional due to such a permeability variation. All fluid properties are assumed constant 

except that the influence of the density variation with temperature and concentration is 

considered only in the body force term. 

 Thus, with the above assumptions the velocity components by u*, v*, w*  in the  directions 

of x*, y*, z* respectively, the temperature  T* and concentration C*, are governed  by the following 

equations: 

 
* *

* *

v w
y z
∂ ∂

+
∂ ∂

= 0,        (2) 

( ) ( )
* * 2 * 2 *

* * * * * * *
* * *2 *2

u u u uv w g T T g C C
y z y z

β β υ∞ ∞

⎛ ⎞∂ ∂ ∂ ∂
+ = − + − + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 

 ( ) ( )2 *
0*

*

B u U
u U

K
συ

ρ

−
− − −       (3) 

 
* * * 2 * 2 * *

* *
* * * *2 *2 *

1v v p v v vv w
y z y y z K

υ
υ

ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
    (4) 

 

2 ** * * 2 * 2 * *
* * 0

* * * *2 *2 *

1 B ww w p w w wv w
y z z y z K

συ
υ

ρ ρ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = − + + − −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
    (5) 

 

 
* * 2 * 2 *

* * * * *
* * *2 *2 *

1 ( ),r

p p

qT T k T Tv w S T T
y z C y z C yρ ρ ∞

⎛ ⎞ ∂∂ ∂ ∂ ∂
+ = + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

        (6) 

 ( )
* * 2 * 2 * 2 *

* * * * *
1* * *2 *2 *2 c

C C C C Tv w D D K C C
y z y z y ∞

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = + + − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

  (7) 

 where g, * * * * *
1, , , , , , , , , , , ,  and Dc pP K S K k C Dβ β ρ σ υ µ  are acceleration due to gravity, 

volumetric coefficient of thermal expansion, volumetric coefficient of mass expansion, pressure, 
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permeability parameter, heat source parameter, chemical reaction parameter, density, electric 

conductivity, kinematic viscosity, viscosity, thermal conductivity, specific heat at constant 

pressure, concentration diffusity and coefficient of thermal diffusivity respectively. 

 The corresponding boundary conditions are : 

 y* = 0; u*= 0, v* = –V, w* = 0, T* = *
wT , C* = *

wC   

 y* → ∞; u*→ U,  w* → 0, p*→ *P∞  ,T* → *
∞T , C* → *

∞C    (8) 

where *
wT  and *

wC  are the  temperature and concentration of the plate, *T∞   and  *C∞  are the 

temperature and concentration of the  fluid far away from the plate, *P∞  is a constant pressure in the 

free stream and V > 0 is a constant and the negative sign indicates that suction is towards the plate. 

 The local radiant for the case of an optically thin gray gas  is  expressed by  

 ( )* *4 *4
* 4rq a T T
y

σ ∞

∂
= − −

∂
       (9) 

where σ and a* are the  Stefan-Boltzmann constant and the mean absorption coefficient 

respectively. Following Vijay Kumar and Varma (2011), we assume that the temperature 

difference within the flow are sufficiently small and that T*4 may be expressed as a linear 

function of the temperature. This is obtained by expanding T*4 in a  Taylor series about *T∞  

and neglecting the higher order terms, thus we get 

 *4 *3 * *44 3T T T T∞ ∞≅ −         (10) 

From equation (9) and (10), equation (6) reduces to  
* * 2 * 2 *

* * * *3 * * * * *
* * *2 *2

1 16 ( ) ( )
p p

T T k T Tv w a T T T S T T
y z C y z C

σ
ρ ρ ∞ ∞ ∞

⎛ ⎞∂ ∂ ∂ ∂
+ = + + − + −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (11) 

 Introducing the following non-dimensional quantities, 
* * * * *

, , , ,y z u v wy z u v w
L L U V V

= = = = =  

** * * ** *

2 * * * *, , , , c
c

w w

K LT T C Cp S Lp S K
V T T C C V V

θ φ
ρ

∞ ∞

∞ ∞

− −
= = = = =

− −
   (12) 

Equations (2) to (5), (7) and (11) are reduced to the following forms 
 

z

w

y
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∂

∂
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represent Grashoff number for heat transfer, Grashoff number for mass transfer, Reynolds 

number, Prandtl number,  Schmidt number, permeability parameter, Hartmann number, Radiation 

parameter and Soret number  respectively.  

 The corresponding boundary conditions are  

 y = 0; u = 0, v = –1, w = 0, θ = 1,  φ = 1  

 y →∞; u →1, w →1, p → p∞ , θ→0,  φ→ 0     (19) 
 In order to solve we assume the solutions of the following form because the amplitude    

∈ (<< 1) of the permeability variation is very small: 

 u( y, z) = u0 (y) + ∈u1 (y,z)+∈2 u2 (y, z) + ……… 

 v (y, z ) = v0 (y) + ∈v1 (y,z)+∈2 v2 (y, z) + ……… 

 w (y, z ) = w0 (y) + ∈w1 (y,z)+∈2 w2 (y, z) + ……… 

 p (y, z ) = p0 (y) + ∈p1 (y,z)+∈2 p2 (y, z) + ……… 

 θ (y, z ) = θ0 (y) + ∈θ1 (y,z)+∈2 θ 2 (y, z) + ……… 

 φ (y, z ) = φ0 (y) + ∈φ1 (y,z)+∈2 φ2 (y, z) + ………    (20) 



 

 93 

 when ∈ = 0, the problem reduces to two-dimensional free convective flow through a 

porous medium with constant permeability which is governed by the following equations :  

 0
dy

dv0 = ,         (21) 

 
2

2 2 2 20 0
0 0 0 02

1 1
e r e c e

p p

d u duv R M u G R G R M
dy dy K K

θ φ
⎛ ⎞ ⎛ ⎞

− − + = − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (22) 

 ( )
2
0 0

0 02 0e r e r
d dv R P SR P R
dy dy
θ θ

θ− + − =      (23) 

 
2 2
0 0 0

0 0 02 2 0e c e c c c
d d dv R S R S K S S
dy dy dy
φ φ θ

φ− − + =     (24) 

 The corresponding boundary conditions become 

 y = 0; u0 = 0, v0 = –1, θ0 = 1, φ0 = 1, 

 y →∞; u0 →1, p0 →p∞, θ0→ 0 , φ0→0     (25) 
 The solutions of these equations (22) to (24)  

u0 = 1 +I2 yAyAyR eIeIe 101
43

−−− −+          (26) 

θ0 = yA0e−          (27) 

 φ0 = (1 + I1) yAyA eIe 01
1

−− −        (28) 

with v0 = –1, w0 = 0 and p0 = p∞       (29) 
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1 1
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 When ∈≠ 0, substituting equation (20) and non-dimensional equation  
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K

)z(K p

π∈+
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periodic permeability into the equations (13) to (18) and comparing the coefficients of identical 

power of ∈, neglecting  ∈2, ∈3 etc., we get the following set of equations. 

z
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y
v 11
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+
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∂ = 0 ,        (31) 

 
2 2

0 1 1 1
1 1 1 2 2

1
r e c e

e

u u u uv G R G R
y y R y z

θ φ
⎛ ⎞∂ ∂ ∂ ∂

− = + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 

( ) 2
0 1 11 cos

e p e

u z u M u
R K R

π− +
− − ,      (32) 

( )
pee KR
zv

z
v

y
v

Ry
p

y
v πcos1 1

2
1

2

2
1

2
11 −

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
−=

∂

∂
− ,    (33) 

 
epee R
wM

KR
w

z
w

y
w

Rz
p

y
w 1

2
1

2
1

2

2
1

2
11 1

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
+

∂

∂
−=

∂

∂
− ,    (34) 

 
2 2

0 1 1 1
1 12 2

1

e r r e

Rv S
y y R P y z PR
θ θ θ θ

θ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂

− = + + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
,    (35) 

 
2 2 2

0 01 1 1 1
1 12 2 2

1
c

e c e

Sv K
y y R S y z R y
φ φ φ φ θ

φ
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 ,   (36) 

 The corresponding boundary conditions are 

 y = 0, u1 = 0, v1 = 0, w1 = 0, θ1 = 0, φ1 = 0 

 y →∞, u1 →0, w1 →0, p1 →  0, θ1→ 0 , φ1→0    (37) 

 Equations (31) to (36) are the linear partial differential equations which describe free 

convective three-dimensional flow. 

 For solution, we first consider (31), (33) and (34) being independent of the main flow and 

the temperature field we assume v1, w1  and p1 in  the following forms: 

 v1(y, z) = v11 (y) cos πz,        (38) 

 w1 (y, z) = zyv π
π

sin)(1
11ʹ′− ,       (39) 

 p1 (y, z) = p11 (y) cos π z,       (40) 



 

 95 

where  the prime in ʹ′v (y)11 denotes the differentiation with respect to y. Expression for v1(y, z) and  

w1 (y, z)  have been  chosen  so that the equation of continuity (31) is satisfied. Substituting the 

expressions (38) - (40) into (33)  - (34) we get 

p
e

p
e K

pRv
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vRv 11
1111

2
1111 −ʹ′=⎟
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⎜
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++−ʹ′ʹ′+ʹ′ʹ′ʹ′      (42) 

 with the boundary conditions  

 y =  0  v  =  0, v 011 11; ʹ′ =   

 y ;  v = 0, v = 0, p 011 11 11→∞ ʹ′ =       (43) 

 On solving equations (41) and (42) under the boundary conditions (43), we get 
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 For the main flow, solutions of  u1, θ1 and φ1 are assumed as 

 u1 (y, z) = u11 (y) cosπz       (47) 

 θ1 (y, z) = θ11 (y) cosπz       (48) 

 φ1 (y, z) = φ11 (y) cosπz       (49) 

 Substitution of equations (47), (48) and (49) into equations (32), (35) and (36) gives 

11
22

1111
1 u
K

MuRu
p

e ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−ʹ′+ʹ′ʹ′ π  

p
ecere K

uRGRGuvR 10
11

2
11

2
011

−
+−−ʹ′= φθ    (50)

 ( )2
11 11 11 11 0e r e r e rR P SR P R v R Pθ θ π θ θʹ′ʹ′ ʹ′ ʹ′+ + − − =       (51) 



 

 96 

 ( )211 11 11 11 0 0 11e c e c c e c cR S R S K R S v S Sφ φ π φ φ θʹ′ʹ′ ʹ′ ʹ′ ʹ′ʹ′+ − + = −     (52) 

 and the corresponding boundary conditions are 

 y = 0, u11 = 0, θ11 = 0, φ11 = 0 

 y →∞, u11 →0, θ11→ 0 , φ11→0      (53) 

Solving equations (50) to (52) with boundary conditions (53) and using equation (47) to  (49) we get 
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where R2 to R5,  A4 to  A16 and I5 to  I53  are given in the appendix. 
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Skin friction 

 The expression for the skin friction in the x*- direction in the non-dimensional form is 

given by 

 0 11
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Nusselt Number 

 The expression for the rate of heat transfer in terms of Nusselt number is given by 
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Sherwood  Number 

 The expression for the rate of mass transfer in terms of Sherwood number is given by 
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3. Results and discussion  

In order to get the physical insight into the problem, the effects of various flow, heat and 

mass transfer parameters in a free convection flow has been discussed. The velocity, temperature 

and concentration profiles are shown in Figs. 2(a), 2(b), 3 and 4. Moreover, values of the skin 

friction, Nusselt number and Sherwood number are presented with the help of tables 1, 2 and 3. 

In order to make the result and discussion meaningful the computation has been carried 

out in the presence of diffusing chemically reacting species such as hydrogen, helium, ammonia 

etc. in the air/water  medium on a cooled surface (Gr>0). The main objective of the discussion is 

to bring out the effect of radiation and thermal diffusion on the flow characteristics in the 

presence of  periodic permeability, heat source and chemical  reaction. 

It is interesting to observe from Fig.2(a) that sudden rise in the velocity is marked in the 

layers near the plate, then the velocity profile attains a constant value in the free stream layer. 

Further, it is seen that the velocity profiles attains its maximum when Gc = 10. Thus, it maybe 

concluded that due to buoyancy effect caused by the concentration difference which contributes 

to the maximum rise of the velocity profile. Again, it is observed that for the heavier species with 

Sc = 0.6 (water vapour) in the presence of exothermic chemical reaction (Kc > 0), the velocity 

profile attains the minimum (curve VII) at all the points of the flow domain. 

It is also revealed that increase in magnetic parameter (M), Schemidt number (Sc), Prandtl 

number (Pr), chemical reaction (Kc) lead to decrease the velocity at all points but increase in 

buoyancy parameters (Gr, Gc), permeability parameter (Kp), enhance the velocity at all points. 
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Fig- 2(a)   Effect of M, Gr, Gc, Kp, Pr, Sc and Kc on Velocity profile when S = 1, S0 = 1,   
R = 10, Re = 10, ∈ = 0.1, z = 0 

 

In the absence  of magnetic field (M = 0), the velocity increases at all points. Thus, it may 

be concluded that Lorentz force (M ≠ 0) opposes the motion of the fluid particle. The similar 

observation is also made in the absence of chemical  reaction (Kc = 0) as well as in the presence of 

endothermic reaction (Kc < 0). Further, it is interesting to note that presence of porous matrix reduces 

the flow  when Kp = 1 (Curve II). 

From Fig.2(b) it is evident that an increase in radiation parameter (R) leads to decrease the 

velocity at all points but increase in heat source parameter (S) and Soret number (S0) enhance the 
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velocity at all points. It is observed that velocity increases for S = 0 and S>0. Thus, the presence of 

sink (S<0) absorbs the heat energy, therby decreasing the velocity. 

 

 

 

 

Fig- 2(b)  Effect of Kc, S, S0 and R on Velocity profile when M = 3, Gr = 2, Gc = 5, Kp = 1,       
Pr = 0.71, Sc = 0.3,    Re = 10, ∈ = 0.1, z = 0 

Curve  K
c
  S  S

0
  R 

-------------------- 
 I     2   1  1  10 
 II    2   0  1  10 
 III   2  -1  1  10 
 IV    0   0  1  10 
 V     2   1  0  10 
 VI    2   1  5  10 
 VII   2   1 10  10 
 VIII  2   1  1   0 
 IX    2   1  1   5 
 X     2   1  0   0 
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Fig. 3 exhibits the temperature profiles for different values of Prandtl number (Pr) and 

Radiation parameter (R). Sudden fall is marked in case of water (Pr = 7.0) and gradual fall in case 

of air. An increase in Pr and R leads to decrease the temperature at all points. 

  

Fig.3. Effect of Pr and R on temperature profile when  Re = 10, Kp = 1, Gr = 2, Gc = 5,   
Kc = 2,   ∈ = 0.1, z = 0 

Further, it is noted that presence of heat source ( S≠ 0), enhances the temperature. 

Fig. 4 shows that the decrease in concentration is marked due to rise in Kc and Sc  i.e., for 

heavier species with high rate of chemical reaction the concentration falls rapidly at all the layer. 

Computation is carried out for hydrogen (Sc =0.22), Helium (Sc =0.30), water vapour (Sc = 0.60) 

and ammonia (Sc = 0.78) as diffusing species in air. Thus the fall of concentration is marked due 

to chemical reaction and presence of heavier species with low diffusibility. 
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Fig.4. Effect of Sc and S0 on concentration profile when Kp = 1, Gc = 5, Gr = 2, ∈ = 0.1,   
z = 0, Re = 10, R = 10 and S = 1 

 

It is also revealed that increase in the Soret number lead to increase the concentration at 

all points. 

Table 1 shows that the skin friction increases due to higher values of heat source 

parameters and other parameters such as Grashoff number, modified Grashoff number, Soret 

number and permeability parameter. Chemical reaction, Schmidt number, reduce the skin 

friction. Hence the buoyancy effect is responsible to  enhance the  shearing stress at the plate so 

that fluid particle experience greater resistance due to heat and mass  diffusion and in all other 

cases, opposite effect is observed. It is to noted that all the entries of skin friction are positive. 
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Table - 1    Value of the Skin friction (τ) are entered for different values of Gr, Gc, M, Kp, 
Kc, S, S0, R and Sc when Pr = 0.71, ∈ = 0.1, z = 0, Re = 10 

M Gr Gc Kp Sc Kc S S0 R τ 
0.0 2.0 5.0 1.0 0.30 0.0 1.0 1.0 10.0 19.920440 
3.0 2.0 5.0 1.0 0.30 0.0 1.0 1.0 10.0 16.331250 
3.0 5.0 5.0 1.0 0.30 0.0 1.0 1.0 10.0 19.914040 
3.0 2.0 10.0 1.0 0.30 0.0 1.0 1.0 10.0 29.192680 
4.0 2.0 5.0 1.0 0.30 0.0 1.0 1.0 10.0 14.606140 
3.0 2.0 5.0 4.0 0.30 0.0 1.0 1.0 10.0 16.529010 
3.0 2.0 5.0 1.0 0.30 2.0 1.0 1.0 10.0 12.989980 
3.0 2.0 5.0 1.0 0.30 2.0 0.0 1.0 10.0 12.739150 
3.0 2.0 5.0 1.0 0.22 2.0 1.0 1.0 10.0 14.932860 
3.0 2.0 5.0 1.0 0.60 2.0 1.0 1.0 10.0 8.955756 
3.0 2.0 5.0 1.0 0.78 2.0 1.0 1.0 10.0 7.911846 
3.0 2.0 5.0 1.0 0.30 2.0 -1.0 1.0 10.0 12.616140 
3.0 2.0 5.0 1.0 0.30 2.0 1.0 0.0 10.0 12.949710 
3.0 2.0 5.0 1.0 0.30 2.0 1.0 10.0 10.0 13.326640 
3.0 2.0 5.0 1.0 0.30 2.0 1.0 1.0 0.0 13.726600 
3.0 2.0 5.0 1.0 0.30 2.0 1.0 1.0 5.0 13.210390 
3.0 2.0 5.0 1.0 0.30 2.0 1.0 0.0 0.0 13.686460 

In case of Nusselt number all the entries are negative (Table 2). It is observed that for 

higher values of heat source, Nusselt number (Nu) increases but fluid with higher Prandtl number 

(Pr) in the presence of sink (S < 0) and source (S > 0) , the Nusselt number (Nu) increases. In case 

of Radiation parameter (R) the reverse effect is observed. The negative value of Nu indicates that 

rate of heat transfer decrease in such cases. 

Table - 2  Nusselt number (Nu) at z = 0, Kp = 1, Re = 10, ∈ = 0.1 

R Pr                    S -1.0 0.0 1.0 

10.00 0.71 -1.266099 -1.170690 -1.045222 
10.00 7.00 -1.017682 -1.003552 -0.907843 
0.00 0.71 -1.125678 -0.990167 -0.830343 
5.00 0.71 -1.187806 -1.090931 -0.955553 

 

The rate of mass transfer at the surface increases as the  Soret number  increases but the 

reverse effect is observed in case of radiation parameter and chemical reaction  (Table 3). Further 
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for heavier species, Sherwood number decreases in the presence of endothermic reaction and for 

exothermic reaction the reverse effect is observed. 

Table - 3  Sherwood number (Sh) at z = 0, Kp = 1, Re = 10, ∈ = 0.1, Pr = 0.71 

Sc Kc S0 R S Sh 
0.30 -0.2 0.0 0.0 0.0 -0.928020 
0.30 0.0 0.0 0.0 0.0 -0.998527 
0.30 2.0 0.0 0.0 0.0 -1.486124 
0.30 2.0 1.0 0.0 0.0 -1.449747 
0.30 2.0 1.0 10.0 0.0 -1.445250 
0.30 2.0 1.0 10.0 1.0 -1.449935 
0.30 2.0 10.0 10.0 1.0 -1.391921 
0.30 2.0 1.0 10.0 -1.0 -1.447711 
0.22 2.0 1.0 10.0 1.0 -1.568924 
0.60 2.0 1.0 10.0 1.0 -1.256831 
0.78 2.0 1.0 10.0 1.0 -1.204932 
0.30 2.0 1.0 5.0 1.0 -1.444629 
0.30 0.0 1.0 10.0 1.0 -0.990421 
0.30 -0.2 1.0 10.0 1.0 -0.918182 
0.22 0.0 1.0 10.0 1.0 -0.990409 
0.22 -0.2 1.0 10.0 1.0 -0.888872 
0.60 0.0 1.0 10.0 1.0 -0.990924 
0.60 -0.2 1.0 10.0 1.0 -0.956016 
0.78 0.0 1.0 10.0 1.0 -0.991265 
0.78 -0.2 1.0 10.0 1.0 -0.964583 

 

4. Conclusion 

1. The Lorentz force and endothermic reaction  oppose the fluid motion producing a 

thinner boundary layer. 

2. The presence of porous matrix with periodic permeability reduces the flow and it is 

further reduced for higher values of Sc i.e., for heavier species. 

As bounding surface contribute substantially to flow stability within boundary 

layer it is appropriate to highlight the followings. 

3. Rate of mass transfer at the surface increases as the Soret number increases and in the 

presence of endothermic reaction (Kc < 0) but the reverse effect  is observed in case 

of radiation parameter and exothermic reaction (Kc > 0). 
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4. Rate of heat transfer at the surface decreases due to presence of sink ( S< 0) and 

increases with source (S > 0) as well as  for low conductive fluid. 

5. The reduction of shearing stress at the plate (skin friction) is desirable as it contribute 

to flow stability. It is interesting to note in the mathematical model exhibiting the 

flow characteristics that the skin friction reduces in the presence of magnetic field, 

radiative surface and heavier species initiating destructive reaction whereas it 

increases in case of other parameters such as buoyancy forces, resistance due to 

porous matrix, Soret number and heat source. 

   Therefore, it is suggested that implementation of the theoretical results in 

practice for reduction of shearing stress at the radiative surface needs right choice of 

fluid exhibiting the above said properties withdrawing the porous matrix and heat 

source in a controlled condition avoiding the Soret effect. 
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I49 = I21 – I22 + I23 + I24 – I25 + I26 – I27 + I28 – I29, I50 = I30 + I31 – I32 – I33 

I51 =  I34 – I35 + I36 – I37 + I38 – I39 + I40, I52 = I42 + I43 – I41 – I44 – I45, I53 = I48 – I46 – I47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


